Pitched musical instruments are often based on an approximate harmonic oscillator such as a string or a column of air, which oscillates at numerous frequencies simultaneously. At these resonant frequencies, waves travel in both directions along the string or air column, reinforcing and canceling each other to form standing waves. Interaction with the surrounding air causes audible sound waves, which travel away from the instrument. Because of the typical spacing of the resonances, these frequencies are mostly limited to integer multiples, or harmonics, of the lowest frequency, and such multiples form the **harmonic series.**

## Terminology

### Partial, harmonic, fundamental, inharmonicity, and overtone

Any complex tone “can be described as a combination of many simple periodic waves (i.e., sine waves) or *partials,* each with its own frequency of vibration, amplitude, and phase.”

A * partial* is any of the sine waves by which a complex tone is described.

A *harmonic* (or a *harmonic partial*) is any of a set of partials that are whole number multiples of a common fundamental frequency. This set includes the *fundamental*, which is a whole number multiple of itself (1 times itself).

*Inharmonicity* is a measure of the deviation of a partial from the closest ideal harmonic, typically measured in cents for each partial.

Typical pitched instruments are designed to have partials that are close to being harmonics, with very low inharmonicity; therefore, in music theory, and in instrument tuning, it is convenient to speak of the partials in those instruments’ sounds as harmonics, even if they have some inharmonicity. Other pitched instruments, especially certain percussion instruments, such as marimba, vibraphone, tubular bells, and timpani, contain non-harmonic partials, yet give the ear a good sense of pitch. Non-pitched, or indefinite-pitched instruments, such as cymbals, gongs, or tam-tams make sounds rich in inharmonic partials.

An *overtone* is any partial except the lowest. Overtone does not imply harmonicity or inharmonicity and has no other special meaning other than to exclude the fundamental. This can lead to numbering confusion when comparing overtones to partials; the first overtone is the second partial.

Some electronic instruments, such as theremins and synthesizers, can play a pure frequency with no overtones, although synthesizers can also combine frequencies into more complex tones, for example to simulate other instruments. Certain flutes and ocarinas are very nearly without overtones.

## Frequencies, wavelengths, and musical intervals in example systems

The simplest case to visualise is a vibrating string, as in the illustration; the string has fixed points at each end, and each harmonic mode divides it into 1, 2, 3, 4, etc., equal-sized sections resonating at increasingly higher frequencies. Similar arguments apply to vibrating air columns in wind instruments, although these are complicated by having the possibility of anti-nodes (that is, the air column is closed at one end and open at the other), conical as opposed to cylindrical bores, or end-openings that run the gamut from no flare (bell), cone flare (bell), or exponentially shaped flares (bells).

In most pitched musical instruments, the fundamental (first harmonic) is accompanied by other, higher-frequency harmonics. Thus shorter-wavelength, higher-frequency waves occur with varying prominence and give each instrument its characteristic tone quality. The fact that a string is fixed at each end means that the longest allowed wavelength on the string (giving the fundamental frequency) is twice the length of the string (one round trip, with a half cycle fitting between the nodes at the two ends). Other allowed wavelengths are 1/2, 1/3, 1/4, 1/5, 1/6, etc. times that of the fundamental.

Theoretically, these shorter wavelengths correspond to vibrations at frequencies that are 2, 3, 4, 5, 6, etc., times the fundamental frequency. Physical characteristics of the vibrating medium and/or the resonator it vibrates against often alter these frequencies. (See inharmonicity and stretched tuning for alterations specific to wire-stringed instruments and certain electric pianos.) However, those alterations are small, and except for precise, highly specialized tuning, it is reasonable to think of the frequencies of the harmonic series as integer multiples of the fundamental frequency.

The harmonic series is an arithmetic series (1×f, 2×f, 3×f, 4×f, 5×f, …). In terms of frequency (measured in cycles per second, or hertz (Hz) where f is the fundamental frequency), the difference between consecutive harmonics is therefore constant and equal to the fundamental. But because our ears respond to sound nonlinearly, we perceive higher harmonics as “closer together” than lower ones. On the other hand, the octave series is a geometric progression (2×f, 4×f, 8×f, 16×f, …), and we hear these distances as “the same” in the sense of musical interval. In terms of what we hear, each octave in the harmonic series is divided into increasingly “smaller” and more numerous intervals.

The second harmonic (or first overtone), twice the frequency of the fundamental, sounds an octave higher; the third harmonic, three times the frequency of the fundamental, sounds a perfect fifth above the second. The fourth harmonic vibrates at four times the frequency of the fundamental and sounds a perfect fourth above the third (two octaves above the fundamental). Double the harmonic number means double the frequency (which sounds an octave higher).